Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.627
Filtrar
1.
Biochem Biophys Res Commun ; 715: 150004, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678784

RESUMO

Megakaryopoiesis and platelet production is a complex process that is underpotential regulation at multiple stages. Many long non-coding RNAs (lncRNAs) are distributed in hematopoietic stem cells and platelets. lncRNAs may play important roles as key epigenetic regulators in megakaryocyte differentiation and proplatelet formation. lncRNA NORAD can affect cell ploidy by sequestering PUMILIO proteins, although its direct effect on megakaryocyte differentiation and thrombopoiesis is still unknown. In this study, we demonstrate NORAD RNA is highly expressed in the cytoplasm during megakaryocyte differentiation. Interestingly, we identified for the first time that NORAD has a strong inhibitory effect on megakaryocyte differentiation and proplatelet formation from cultured megakaryocytes. DUSP6/ERK1/2 pathway is activated in response to NORAD knockdown during megakaryocytopoiesis, which is achieved by sequestering PUM2 proteins. Finally, compared with the wild-type control mice, NORAD knockout mice show a faster platelet recovery after severe thrombocytopenia induced by 6 Gy total body irradiation. These findings demonstrate lncRNA NORAD has a key role in regulating megakaryocyte differentiation and thrombopoiesis, which provides a promising molecular target for the treatment of platelet-related diseases such as severe thrombocytopenia.


Assuntos
Plaquetas , Diferenciação Celular , Fosfatase 6 de Especificidade Dupla , Megacariócitos , Camundongos Knockout , RNA Longo não Codificante , Trombopoese , Megacariócitos/metabolismo , Megacariócitos/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Trombopoese/genética , Plaquetas/metabolismo , Camundongos , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Sistema de Sinalização das MAP Quinases , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Humanos , Camundongos Endogâmicos C57BL , Células Cultivadas
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 410-413, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660906

RESUMO

The first patient, a 10-year-old girl, presented with pancytopenia and recurrent epistaxis, along with a history of repeated upper respiratory infections, café-au-lait spots, and microcephaly. Genetic testing revealed compound heterozygous mutations in the DNA ligase IV (LIG4) gene, leading to a diagnosis of LIG4 syndrome. The second patient, a 6-year-old girl, was seen for persistent thrombocytopenia lasting over two years and was noted to have short stature, hyperpigmented skin, and hand malformations. She had a positive result from chromosome breakage test. She was diagnosed with Fanconi anemia complementation group A. Despite similar clinical presentations, the two children were diagnosed with different disorders, suggesting that children with hemocytopenia and malformations should not only be evaluated for hematological diseases but also be screened for other potential underlying conditions such as immune system disorders.


Assuntos
Anormalidades Múltiplas , Humanos , Feminino , Criança , Anormalidades Múltiplas/genética , Pancitopenia/etiologia , Pancitopenia/genética , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/deficiência , Trombocitopenia/genética , Trombocitopenia/etiologia , Citopenia
3.
Muscle Nerve ; 69(6): 708-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558464

RESUMO

INTRODUCTION/AIMS: GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS: Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS: A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION: The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.


Assuntos
Éxons , Íntrons , Complexos Multienzimáticos , Trombocitopenia , Humanos , Masculino , Feminino , Complexos Multienzimáticos/genética , Éxons/genética , Íntrons/genética , Adulto , Trombocitopenia/genética , Miopatias Distais/genética , Adulto Jovem , Adolescente , Criança , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542074

RESUMO

Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.


Assuntos
Antraz , Bacillus anthracis , Leucemia Eritroblástica Aguda , Trombocitopenia , Animais , Humanos , Camundongos , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Fator 1 de Resposta a Butirato/metabolismo , Diferenciação Celular , Trombocitopenia/induzido quimicamente , Trombocitopenia/genética
5.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469783

RESUMO

BACKGROUND: The rapid development of automatic blood cell analyzers has greatly optimized complete blood count results. However, erroneous results relevant to automatic blood cell analyzers still exist. Pseudothrombocytopenia can be observed in both cases of anticoagulant-induced platelet aggregation, and the presence of large and giant platelets. METHODS: A rare case of a MYH9-related disorder, in which marked underestimation of platelet count was led by large and giant platelets using the impedance count by an automated hematology analyzer. Moreover, lancet-shaped and Dohle body-like cytoplasmic inclusions were detected in almost all white blood cells of the patient. RESULTS: The platelet count was done by an optical platelet counter or a fluorescence platelet counter, and peripheral blood smear was evaluated. In addition, the diagnosis of MYH9-related disorder was established by the molecular findings. CONCLUSIONS: Identification of the peripheral blood smear and familial history will eliminate the need for further laboratory testing and bone marrow examination.


Assuntos
Perda Auditiva Neurossensorial , Trombocitopenia , Trombocitopenia/congênito , Humanos , Contagem de Plaquetas/métodos , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Plaquetas , Perda Auditiva Neurossensorial/diagnóstico , Cadeias Pesadas de Miosina/genética
6.
Br J Haematol ; 204(5): 1899-1907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432067

RESUMO

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.


Assuntos
Anormalidades Múltiplas , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Histona Desmetilases , Proteínas de Neoplasias , Doenças Vestibulares , Humanos , Doenças Vestibulares/genética , Doenças Vestibulares/diagnóstico , Criança , Face/anormalidades , Feminino , Masculino , Pré-Escolar , Anormalidades Múltiplas/genética , Adolescente , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Doenças Hematológicas/genética , Proteínas de Ligação a DNA/genética , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/terapia , Púrpura Trombocitopênica Idiopática/diagnóstico , Lactente , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Trombocitopenia/etiologia , Trombocitopenia/terapia , Anemia Hemolítica Autoimune/genética , Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/terapia , Doenças Autoimunes/genética , Doenças Autoimunes/diagnóstico , Rituximab/uso terapêutico , Mutação , Citopenia
7.
BMC Pediatr ; 24(1): 62, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245683

RESUMO

Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) type 2, caused by MDS1 and EVI1 complex locus (MECOM) gene mutations, is a rare inherited bone marrow failure syndrome (IBMFS) with skeletal anomalies, characterized by varying presentation of congenital thrombocytopenia (progressing to pancytopenia), bilateral proximal radioulnar synostosis, and other skeletal abnormalities. Due to limited knowledge and heterogenous manifestations, clinical diagnosis of the disease is challenging. Here we reported a novel MECOM mutation in a Chinese boy with typical clinical features for RUSAT-2. Trio-based whole exome sequencing of buccal swab revealed a novel heterozygous missense mutation in exon 11 of the MECOM gene (chr3:168818673; NM_001105078.3:c.2285G > A). The results strongly suggest that the variant was a germline mutation and disease-causing mutation. The patient received matched unrelated donor hematopoetic stem cell transplantation (HSCT). This finding was not only expanded the pathogenic mutation spectrum of MECOM gene, but also provided key information for clinical diagnosis and treatment of RUSAT-2.


Assuntos
Mutação de Sentido Incorreto , Rádio (Anatomia) , Sinostose , Trombocitopenia , Ulna , Humanos , Masculino , China , Proteína do Locus do Complexo MDS1 e EVI1/genética , Mutação , Rádio (Anatomia)/anormalidades , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Fatores de Transcrição/genética , Ulna/anormalidades
8.
Eur J Haematol ; 112(4): 594-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088145

RESUMO

BACKGROUND: Clonal cytopenia of undetermined significance (CCUS) is defined as somatic mutations of myeloid malignancy-associated genes in the blood or bone marrow with one or more persistent unexplained cytopenias that do not meet diagnostic criteria for a defined myeloid neoplasm. CCUS with isolated thrombocytopenia (CCUS-IT) is rare. METHODS: This is a retrospective case series of patients with prolonged isolated thrombocytopenia, a pathogenic mutation on a myeloid molecular panel, and a bone marrow biopsy with morphologic atypia below the WHO-defined diagnostic threshold for dysplasia. RESULTS: Five male patients were identified with a median age at CCUS-IT diagnosis of 61 years (56-74). Median duration of thrombocytopenia prior to CCUS-IT diagnosis was 4 years (3-12), and median platelet count at CCUS-IT diagnosis was 41 × 103 /µL (26-80). All patients had megakaryocytic hyperplasia and megakaryocytes with hyperchromasia and high nuclear-cytoplasmic ratio. Pathogenic SRSF2 mutations were identified in all 5 patients with median variant allele frequency of 36% (28%-50%). Three patients were treated with IVIg and/or steroids with no response; one of three responded to thrombopoietin receptor agonists. Three patients progressed to MDS and one to AML. DISCUSSION: We describe the clinicopathological features of CCUS-IT which can mimic immune thrombocytopenia.


Assuntos
Citopenia , Transtornos Mieloproliferativos , Trombocitopenia , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Hematopoese/genética , Transtornos Mieloproliferativos/diagnóstico , Mutação , Trombocitopenia/etiologia , Trombocitopenia/genética
9.
Br J Haematol ; 204(1): 56-67, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38083878

RESUMO

Cyclic thrombocytopenia (CTP) is characterized by periodic platelet oscillation with substantial amplitude. Most CTP cases have a thrombocytopenic background and are often misdiagnosed as immune thrombocytopenia with erratically effective treatment choices. CTP also occurs during hydroxyurea treatment in patients with myeloproliferative diseases. While the aetiology of CTP remains uncertain, here we evaluate historical, theoretical and clinical findings to provide a framework for understanding CTP pathophysiology. CTP retains the intrinsic oscillatory factors defined by the homeostatic regulation of platelet count, presenting as reciprocal platelet/thrombopoietin oscillations and stable oscillation periodicity. Moreover, CTP patients possess pathogenic factors destabilizing the platelet homeostatic system thereby creating opportunities for external perturbations to initiate and sustain the exaggerated platelet oscillations. Beyond humoral and cell-mediated autoimmunity, we propose recently uncovered germline and somatic genetic variants, such as those of MPL, STAT3 or DNMT3A, as pathogenic factors in thrombocytopenia-related CTP. Likewise, the JAK2 V617F or BCR::ABL1 translocation that drives underlying myeloproliferative diseases may also play a pathogenic role in hydroxyurea-induced CTP, where hydroxyurea treatment can serve as both a trigger and a pathogenic factor of platelet oscillation. Elucidating the pathogenic landscape of CTP provides an opportunity for targeted therapeutic approaches in the future.


Assuntos
Neoplasias da Medula Óssea , Transtornos Mieloproliferativos , Trombocitopenia , Humanos , Hidroxiureia/uso terapêutico , Trombocitopenia/etiologia , Trombocitopenia/genética , Contagem de Plaquetas , Plaquetas , Transtornos Mieloproliferativos/genética
10.
Clin Genet ; 105(2): 196-201, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850357

RESUMO

Syndromic constitutive thrombocytopenia encompasses a heterogeneous group of disorders characterised by quantitative and qualitative defects of platelets while featuring other malformations. Recently, heterozygous, de novo variants in RAP1B were reported in three cases of syndromic thrombocytopenia. Here, we report two additional, unrelated individuals identified retrospectively in our data repository with heterozygous variants in RAP1B: NM_001010942.2(RAP1B):c.35G>A, p.(Gly12Glu) (de novo) and NM_001010942.2(RAP1B):c.178G>A, p.(Gly60Arg). Both individuals had thrombocytopenia, as well as congenital malformations, and neurological, behavioural, and dysmorphic features, in line with previous reports. Our data supports the causal role of monoallelic RAP1B variants that disrupt RAP1B GTPase activity in syndromic congenital thrombocytopenia.


Assuntos
Plaquetas , Trombocitopenia , Humanos , Estudos Retrospectivos , Plaquetas/metabolismo , Trombocitopenia/genética , Proteínas rap de Ligação ao GTP
11.
Artigo em Inglês | MEDLINE | ID: mdl-37526450

RESUMO

BACKGROUND: Congenital amegakaryocytic thrombocytopenia (CAMT) is a bone marrow failure syndrome with autosomal recessive inheritance characterized by the lack of megakaryocytes and thrombocytopenia. The cause of the disease is a mutation in the c-Mpl gene, which encodes the thrombopoietin (TPO) receptor. The main treatment for this genetic disorder is an allogeneic hematopoietic stem cell transplant (allo-HSCT). However, transplant-related mortality, development of acute and chronic graft-versushost disease (GvHD), and susceptibility to opportunistic infections are major barriers to transplantation. Delay in the reconstitution of T cells and imbalance in the regeneration of distinct functional CD4 and CD8 T-cell subsets mainly affect post-transplant complications. We report a case of CAMT, who developed acute GvHD but had no signs and symptoms of chronic GvHD following allo-HSCT. CASE PRESENTATION: At the age of four, she presented with petechiae and purpura. In laboratory investigations, pancytopenia without organomegaly, and cellularity less than 5% in bone marrow biopsy, were observed. A primary diagnosis of idiopathic aplastic anemia was made, and she was treated with prednisolone, cyclosporine, and anti-thymocyte globulin (ATG), which did not respond. Genetic analysis revealed the mutation c.1481T>G (p. L494W) in exon 10 of the c-Mpl gene, and the diagnosis of CAMT was confirmed. The patient underwent allo-HSCT from a healthy sibling donor. Alloimmunization reactions and immune disorders were present due to long-term treatment with immunosuppressive medications and repeated blood and platelet transfusions. Hence, the regeneration of T-lymphocytes after allo-HSCT was evaluated. CONCLUSION: Successful treatment of acute GvHD prevented advancing the condition to chronic GvHD, and this was accompanied by delayed T-cell reconstitution through an increase in Treg:Tcons ratio.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Trombocitopenia , Feminino , Humanos , Criança , Linfócitos T , Trombocitopenia/diagnóstico , Trombocitopenia/terapia , Trombocitopenia/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia
12.
Am J Med Genet A ; 194(1): 77-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37746810

RESUMO

Thrombocytopenia can be inherited or acquired from a variety of causes. While hereditary causes of thrombocytopenia are rare, several genes have been associated with the condition. In this report, we describe an 18-year-old man and his mother, both of whom have congenital thrombocytopenia. Exome sequencing in the man revealed a 1006 kb maternally inherited deletion in the 10p12.1 region (arr[GRCh37] 10p12.1(27378928_28384564)x1) of uncertain clinical significance. This deletion in the THC2 locus includes genes ANKRD26, known to be involved in normal megakaryocyte differentiation, and MASTL, which some studies suggest is linked to autosomal dominant thrombocytopenia. In the family presented here, the deletion segregated with the congenital thrombocytopenia phenotype, suggesting that haploinsufficiency of one or both genes may be the cause. To our knowledge, this is the first report of a deletion of the THC2 locus associated with thrombocytopenia. Future functional studies of deletions of the THC2 locus may elucidate the mechanism for this phenotype observed clinically.


Assuntos
Transtornos Cromossômicos , Trombocitopenia , Humanos , Adolescente , Trombocitopenia/genética , Trombocitopenia/congênito , Transtornos Cromossômicos/genética , Quebra Cromossômica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética
13.
Clin Exp Nephrol ; 28(1): 40-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37733142

RESUMO

BACKGROUND: MYH9-related disease (MYH9-RD) is characterized by congenital macrothrombocytopenia, Döhle body-like granulocyte inclusions, and nephropathy, which may progress to end-stage kidney disease (ESKD). However, information on the effects of renin-angiotensin system (RAS) inhibitors on kidney survival is currently lacking and the outcomes of kidney replacement therapy (KRT) in MYH9-RD are largely unknown. METHODS: We conducted a cross-sectional nationwide survey by sending questionnaires to 145 institutions in Japan and analyzed data for 49 patients. RESULTS: The median patient age was 27 years. Genetic analysis was performed in 37 (76%) patients. Twenty-four patients (65%) had MYH9 variants affecting the motor domain of non-muscle myosin heavy chain-IIA, and these patients had poorer kidney survival than those with variants affecting the tail domain (P = 0.02). There was no significant difference in kidney survival between patients treated with and without RAS inhibitors. Hemodialysis and peritoneal dialysis were performed in 16 and 7 patients, respectively. There were no major bleeding complications during the perioperative period or during follow-up, except for one patient. Most of the 11 patients who underwent kidney transplantation required perioperative red cell concentrate transfusions, but there was no graft loss during the median posttransplant observational period of 2.0 (interquartile range, 1.3-6.8) years. CONCLUSION: Our study demonstrated no beneficial effect of RAS inhibitors on kidney function in patients with MYH9-RD, indicating the need for further studies with more patients. All modalities of KRT are feasible options for MYH9-RD patients who progress to ESKD, with adequate attention to bleeding complications.


Assuntos
Falência Renal Crônica , Trombocitopenia , Humanos , Adulto , Mutação , Japão/epidemiologia , Estudos Transversais , Trombocitopenia/complicações , Trombocitopenia/congênito , Trombocitopenia/genética , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Anti-Hipertensivos , Cadeias Pesadas de Miosina/genética
14.
Blood ; 143(4): 342-356, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37922495

RESUMO

ABSTRACT: Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.


Assuntos
Megacariócitos , Complexo Glicoproteico GPIb-IX de Plaquetas , Trombocitopenia , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Citoplasma/metabolismo , Filaminas/genética , Filaminas/metabolismo , Megacariócitos/metabolismo , Morfogênese , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo
15.
Blood Cells Mol Dis ; 104: 102796, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717409

RESUMO

Thrombopoiesis is the production of platelets from megakaryocytes in the bone marrow of mammals. In fish, thrombopoiesis involves the formation of thrombocytes without megakaryocyte-like precursors but derived from erythrocyte thrombocyte bi-functional precursor cells. One unique feature of thrombocyte differentiation involves the maturation of young thrombocytes in circulation. In this study, we investigated the role of hox genes in zebrafish thrombopoiesis to model platelet production. We selected hoxa10b, hoxb2a, hoxc5a, hoxd3a, and hoxc11b from thrombocyte RNA expression data, and checked whether they are expressed in young or mature thrombocytes. We found hoxa10b, hoxb2a, hoxc5a, and hoxd3a were expressed in both young and mature thrombocytes and hoxc11b was expressed in only young thrombocytes. We then performed knockdowns of these 5 hox genes and found hoxc11b knockdown resulted in thrombocytosis and the rest showed thrombocytopenia. To identify hox genes that could have been missed by the above datasets, we performed knockdowns 47 hox genes in the zebrafish genome and found hoxa9a, and hoxb1a knockdowns resulted in thrombocytopenia and they were expressed in both young and mature thrombocytes. In conclusion, our comprehensive knockdown study identified Hoxa10b, Hoxb2a, Hoxc5a, Hoxd3a, Hoxa9a, and Hoxb1a, as positive regulators and Hoxc11b, as a negative regulator for thrombocyte development.


Assuntos
Trombocitopenia , Trombopoese , Animais , Trombopoese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Genes Homeobox , Plaquetas/metabolismo , Megacariócitos , Trombocitopenia/genética , Mamíferos/genética
16.
Medicine (Baltimore) ; 102(51): e36735, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134071

RESUMO

RATIONALE: This study aimed to address the diagnostic challenges associated with MYH9-related disorders (MYH9-RDs) and highlight the importance of recognizing Döhle body-like inclusions as crucial diagnostic markers for this condition. PATIENT CONCERNS: Patients with MYH9-RDs often present with mild and diverse clinical characteristics, leading to misdiagnosis, delayed diagnosis, and inappropriate treatments, such as hormonal therapy and splenectomy. This section highlights the significance of understanding atypical clinical presentations and their impact on patients' well-being. DIAGNOSES: This section emphasizes the misdiagnosis of MYH9-RDs as immune thrombocytopenia due to overlapping clinical features. This highlights the need for a comprehensive approach, including detailed personal and family history, careful review of peripheral blood smears, and identification of Döhle body-like inclusions to differentiate MYH9-RDs from other conditions. INTERVENTION: This study advocates for a shift in the diagnostic approach, urging physicians to pay closer attention to the morphological features observed in peripheral blood smears, particularly the presence of Döhle body-like inclusions and large platelets. This emphasizes the importance of avoiding unnecessary diagnostic studies through effective utilization of this simple and reliable method. OUTCOMES: By adopting a comprehensive approach that combines gene sequencing with morphological analysis, an accurate diagnosis of MYH9-RDs can be achieved. Early identification of MYH9-RDs allows for appropriate management strategies, genetic counseling, and prevention of complications associated with the condition. LESSONS: This section highlights the lessons learned from this study, emphasizing the need for increased awareness among healthcare professionals about MYH9-RDs and the importance of incorporating peripheral blood smear evaluations into the diagnostic process. This emphasizes the significance of accurate diagnosis to prevent unnecessary treatments and ensure appropriate patient care.


Assuntos
Perda Auditiva Neurossensorial , Trombocitopenia , Humanos , Perda Auditiva Neurossensorial/diagnóstico , Proteínas Motores Moleculares/genética , Mutação , Cadeias Pesadas de Miosina/genética , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Masculino , Adulto
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1560-1565, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994143

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic etiology for a child with atypical Hemolytic uremic syndrome (aHUS) in conjunct with nephrotic level proteinuria. METHODS: A child patient who had visited the Affiliated Hospital of Qingdao University on June 25, 2020 was selected as the study subject. Clinical data of the patient was collected. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing of the child and his parents. RESULTS: The child, an 8-month-old male, had presented mainly with edema, oliguria, hematuria, nephrotic level proteinuria, anemia, thrombocytopenia, increased creatinine and urea, hypercholesterolemia but normal complement levels. Genetic testing revealed that he has harbored compound heterozygous variants of the DGKE gene, namely c.12_18dupGAGGCGG (p.P7fs*37) and c.1042G>T (p.D348Y), which were respectively inherited from his father and mother. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variants were classified as likely pathogenic and variant of uncertain significance, respectively. By combining his clinical manifestations and results of genetic testing, the child was diagnosed with aHUS with nephrotic level proteinuria. CONCLUSION: For infants and young children with aHUS in conjunct with nephrotic level proteinuria, variants of the DGKE gene should be screened. Above finding has expanded the mutational spectrum of the DGKE gene.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Trombocitopenia , Lactente , Feminino , Humanos , Criança , Masculino , Pré-Escolar , Síndrome Hemolítico-Urêmica Atípica/genética , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Mutação , Testes Genéticos , Trombocitopenia/genética , Proteinúria/genética
18.
Platelets ; 34(1): 2267676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849076

RESUMO

Inherited thrombocytopenia (IT) is a group of hereditary disorders characterized by a reduced platelet count as the main clinical manifestation, and often with abnormal platelet function, which can subsequently lead to impaired hemostasis. In the past decades, humanized mouse models (HMMs), that are mice engrafted with human cells or genes, have been widely used in different research areas including immunology, oncology, and virology. With advances of the development of immunodeficient mice, the engraftment, and reconstitution of functional human platelets in HMM permit studies of occurrence and development of platelet disorders including IT and treatment strategies. This article mainly reviews the development of humanized mice models, the construction methods, research status, and problems of using humanized mice for the in vivo study of human thrombopoiesis.


Humanized mouse models (HMMs) refer to immunodeficient mice that have been used for the investigation of human hematopoiesis and immunity for years. With engrafted human hematopoietic stem cells (HSCs), the differentiation process of HSCs and re-construction of platelets can be monitored in the mice. Until now, several strains of HMMs have been used in the studies of inherited thrombocytopenia (IT), a genetic disorder associated with low platelet count in the blood. In this study, we reviewed the development of these HMMs in IT studies, compared the different sources of HSCs transplanted into HMMs and summarize the strategies of HSC transplantation in HMMs. The Kit−/− immunodeficient mice showed effectively long-term and stable implantation of human HSC without irradiation and higher implantation levels, and they also support multilinear differentiation of human HSC, such as platelets and red blood cells. The source and count of HSCs and the transplantation strategy may also impact the result. This study provides a basis information for HMMs used in IT and will help other investigators in this field choosing the right research plan.


Assuntos
Transtornos Plaquetários , Transplante de Células-Tronco Hematopoéticas , Trombocitopenia , Animais , Camundongos , Humanos , Modelos Animais de Doenças , Plaquetas , Trombopoese , Trombocitopenia/genética , Transplante de Células-Tronco Hematopoéticas/métodos
19.
Platelets ; 34(1): 2262607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852929

RESUMO

ANKRD26-related thrombocytopenia (ANKRD26-RT or THC2, MIM 188 000), an autosomal dominant thrombocytopenia, is unresponsive to immunosuppressive therapy and susceptible to hematological malignancies. A large number of pediatric patients are diagnosed with immune thrombocytopenia (ITP) every year; however, thrombocytopenia of genetic origin is often missed. Extensive characterization of ANKRD26-RT will help prevent missed diagnosis and misdiagnosis. Furthermore, identification of ANKRD26-RT will help in the formulation of an accurate diagnosis and a treatment plan. In our study, we report cases of two Chinese pediatric patients with ANKRD26-RT and analyze their clinical characteristics, gene mutations, and treatment modalities. Both patients were 1-year-old and presented with mild bleeding (World Health Organization(WHO) score grade 1), different degrees of platelet reduction, normal mean platelet volume, and megakaryocyte maturation impairment not obvious. Genetic tests revealed that both patients had ANKRD26 gene mutations.Patient 1 had a mutation c.-140C>G of the 5' untranslated region (UTR), and patient 2 had a mutation of c.-127A>T of 5'UTR. Both patients were treated with eltrombopag, and the treatment was no response, with no adverse reactions.


What is the background? ANKRD26-RT is an autosomal dominant thrombocytopenia which is unresponsive to immunosuppressive therapy and susceptible to hematological malignancies.It is rare and lacks specific clinical features, making misdiagnosis easy.Some studies report that eltrombopag is safe and effective for short-term treatment of the disease; however, these reports are limited.What we did and summary of findings. We retrospectively studied the clinical manifestations and diagnosis process of ANKRD26-RT and discussed the treatment efficacy of immunosuppressants and eltrombopag for its management.We found two pediatric cases of patients with ANKRD26-RT with varying degrees of thrombocytopenia, mild bleeding, normal mean platelet volume, and megakaryocyte maturation impairment that was not obvious. Immunosuppressant treatment wasunresponsiveor temporarily responsivebut not sustained , and short-term administration of eltrombopag (25 mg/day) was safe, but it did not effectively improve the patients' platelet counts.What is the impact? If patients clinically diagnosed with immune thrombocytopenia do not respond  to immunosuppressive agents, genetic testing should be conducted to exclude hereditary thrombocytopenia, and a normal mean platelet volume should not exclude the possibility of the disease.For patients with ANKRD26-RT, eltrombopag is safe for short-term use;however, 25 mg/day treatment is unresponsive.Ourreport complements data on the diagnosis and management of ANKRD26-RT disease in children.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Lactente , Benzoatos/uso terapêutico , Hidrazinas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/terapia , Trombocitopenia/etiologia , Trombocitopenia/genética , Resultado do Tratamento
20.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(10): 1719-1724, 2023 Oct 06.
Artigo em Chinês | MEDLINE | ID: mdl-37859394

RESUMO

To investigate two clusters of severe fever with thrombocytopenia syndrome virus (SFTSV) in Xinyang City, Henan Province, in 2022, and analyze their causes, transmission route, risk factors, and the characteristics of virus genetic variation. Case search and case investigation were carried out according to the case definition. Blood samples from cases, family members and neighbors and samples of biological vectors were collected for RT-PCR to detect SFTSV. The whole genome sequencing and bioinformatics analysis were performed on the collected positive samples. A total of two clustered outbreaks occurred, involving two initial cases and ten secondary cases, all of which were family recurrent cases. Among them, nine secondary cases had close contact with the blood of the initial case, and it was determined that close contact with blood was the main risk factor for the two clustered outbreaks. After genome sequencing analysis, we found that the SFTSV genotype in two cases was type A, which was closely related to previous endemic strains in Xinyang. The nucleotide sequence of the SFTSV in the case was highly homologous, with a total of nine amino acid mutation sites in the coding region. It was not ruled out that its mutation sites might have an impact on the outbreak of the epidemic.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/complicações , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Infecções por Bunyaviridae/complicações , Infecções por Bunyaviridae/epidemiologia , Trombocitopenia/epidemiologia , Trombocitopenia/genética , Trombocitopenia/complicações , Phlebovirus/genética , Surtos de Doenças , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA